1. (2.5 pts) The IV characteristic of a photovoltaic cell is shown.
a) Estimate the fill factor and the series resistance.
b) Derive an analytical expression for the series resistance. Obtain a nearly exact value for the series resistance within this analysis.

2. (1.5 pts) A p-n junction solar cell has $V_{\mathrm{oc}}=0.6 \mathrm{~V}$ and $J_{\mathrm{sc}}=30 \mathrm{~mA} / \mathrm{cm}^{2}$. A second cell, of the same area, has $V_{\mathrm{oc}}=0.7 \mathrm{~V}$ and $J_{\mathrm{sc}}=12 \mathrm{~mA} / \mathrm{cm}^{2}$. Assume that both cells obey the ideal diode equation,
a) Find the values of V_{oc} and J_{sc} when the two are connected in parallel?
b) Find the values of V_{oc} and J_{sc} when the two are connected in series?

q	$1.6 \times 10^{-19} \mathrm{C}$	electron charge
ϵ_{o}	$8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm}$	permittivity of free space
K_{S}	$11.8(\mathrm{Si})$	relative dielectric constant
K_{o}	$3.9\left(\mathrm{SiO}_{2}\right)$	relative dielectric constant
k_{B}	$8.617 \times 10^{-5} \mathrm{eV} / \mathrm{K}$	Boltzman's constant
h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$	Planck constant
m_{o}	$9.11 \times 10^{-31} \mathrm{~kg}$	electron mass
$k_{B} T / q$	0.0259 V at 300 K	thermal voltage
c	$3 \times 10^{8} \mathrm{~m} / \mathrm{s}$	speed of light

