- 1. (2.5 pts) The IV characteristic of a photovoltaic cell is shown.
 - a) Estimate the fill factor and the series resistance.
 - b) Derive an analytical expression for the series resistance. Obtain a nearly exact value for the series resistance within this analysis.

- 2. (1.5 pts) A p-n junction solar cell has $V_{oc} = 0.6$ V and $J_{sc} = 30$ mA/cm². A second cell, of the same area, has $V_{oc} = 0.7$ V and $J_{sc} = 12$ mA/cm². Assume that both cells obey the ideal diode equation,
 - a) Find the values of $V_{\rm oc}$ and $J_{\rm sc}$ when the two are connected in parallel?
 - b) Find the values of V_{oc} and J_{sc} when the two are connected in series?

q	$1.6\times 10^{-19}~{\rm C}$	electron charge
ϵ_{o}	$8.85 imes10^{-14}~\mathrm{F/cm}$	permittivity of free space
K_s	11.8 (Si)	relative dielectric constant
Ko	3.9 (SiO ₂)	relative dielectric constant
k_B	$8.617 imes10^{-5}~{ m eV/K}$	Boltzman's constant
h	$6.63 imes 10^{-34} \text{ J} \text{ s}$	Planck constant
m_o	$9.11 imes 10^{-31} \text{ kg}$	electron mass
k_BT/q	0.0259 V at 300 K	thermal voltage
с	$3 \times 10^8 \text{ m/s}$	speed of light